Reference

  • Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K., & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of retailing, 91(1), 34-49.

  • Agler, Robert, and Paul De Boeck. "On The Interpretation And Use Of Mediation: Multiple Perspectives On Mediation Analysis". Frontiers In Psychology, vol 8, 2017. Frontiers Media SA, DOI:10.3389/fpsyg.2017.01984.

  • Audrey P., Gilles N. & Anne-Sophie C. (2020). Digital transparency: Dimensions, antecedents and consequences on the quality of customer relationships. Recherche et Applications en Marketing 2020, Vol. 35(4) 72 –98. DOI: 10.1177/2051570720973548

  • Barry B., (2016) Referral marketing: Harnessing the power of your customers. Business Horizons, Volume 59, Issue 1, January–February 2016, pp. 19-28. https://doi.org/10.1016/j.bushor.2015.08.001

  • Bach, T. M., da Silva, W. V., Souza, A. M., Kudlawicz-Franco, C., & da Veiga, C. P. (2020). Online customer behavior: perceptions regarding the types of risks incurred through online purchases. Palgrave Communications, 6(1), 1-12.

  • Bentele G and Seidenglanz R (2008) Trust and credibility – Prerequisites for communication management. Public Relations Research. VS Verlag für Sozialwissenschaften, pp. 49–62

  • Berger, J., & Keller Fay Group (2016). Research shows micro-influencers have more impact than average consumers., Retrieved from: https://www.expertvoice.com/wphttps://www.expertvoice.com/wp-content/uploads/2016/12/Power-of-Influence-Quantified.pdfcontent/uploads/2016/12/Power-of-Influence-Quantified.pdf

  • Bo X. & Izak B. (2007), E-Commerce Product Recommendation Agents: Use, Characteristics, and Impact. Management Information Systems Research Center, University of Minnesota MIS Quarterly, Vol. 31, No.1, pp. 137-209.

  • Calhoun, C. S., Bobko, P., Gallimore, J. J., & Lyons, J. B. (2019). Linking precursors of interpersonal trust to human-automation trust: An expanded typology and exploratory experiment. Journal of Trust Research, 9(1), 28–46. doi:10.1080/21515581.2019.1579730

  • Carmon, Z., Klaus W., & Marcel Z. (2003), “Option Attachment: When Deliberating Makes Choosing Feel like Losing,” Journal of Consumer Research, 30 (June), pp.15-29.

  • Chalmers TC, Smith H Jr, Blackburn B, Silverman B, Schroeder B, Reitman D, Ambroz A (1981). "A method for assessing the quality of a randomized control trial". Controlled Clinical Trials. 2 (1): 31–49. doi:10.1016/0197-2456(81)90056-8

  • Chan, Y. H., Taylor, R. R., & Markham, S. (2008). The role of subordinates' trust in a social exchange-driven psychological empowerment process. Journal of Managerial Issues , 20 (4), 444-467.

  • Chipp, K., Strandberg, C., Nath, A., & Abduljabber, M. (2017). Content Curatorship and Collaborative Filtering: A Symbolic Interactionist Approach. Back To The Future: Using Marketing Basics To Provide Customer Value, 705-715. https://doi.org/10.1007/978-3-31966023-3_228

  • Chen, L. & Shupei, Y., 2018. Influencer Marketing: How Message Value and Credibility Affect Consumer Trust of Branded Content on Social Media. Journal of Interactive Advertising 19(1):1-45. DOI: 10.1080/15252019.2018.1533501

  • Chopra, K., and Wallace, W. A. "Trust in Electronic Environments," in Proceedings of the 36th Hawaii International Conference on System Sciences, IEEE Computer Society Press, Los Alamitos, CA, 2003.

  • Donaldson B and O’Toole T (2000) Classifying relationship structures: Relationship strength in industrial markets. Journal of Business & Industrial Marketing 15(7): 491–506.

  • Dragovic, N., Madrazo Azpiazu, I., & Pera, M. S. (2018). From Recommendation to Curation: When the System Becomes Your Personal Docent.

  • Dragovic, N., Azpiazu, I., & Pera, M. (2018). From Recommendation to Curation. In IntRS Workshop. Vancouver. Retrieved 11 December 2020, from http://ceur-ws.org/Vol2225/paper6.pdf.

  • Festinger L (1957) A theory of cognitive dissonance. Stanford University Press, Stanford

  • Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.

  • Gabriel, S. , & Gardner, W. L. (1999). Are there ‘his’ and ‘hers’ types of interdependence? The implications of gender differences in collective versus relational interdependence for affect, behavior, and cognition . Journal of Personality and Social Psychology, 77, 642-655 .

  • Gefen D., E. Karahanna and D.W. Straub (2003) "Trust and TAM in Online Shopping: An Integrated Model" MIS Quarterly, (27)1, pp. 51-90.

  • Goanta, C., & Spanakis, G. (2020). Influencers and Social Media Recommender Systems: Unfair Commercial Practices in EU and US Law.

  • Graeme A. Haynes(2009), “Testing the boundaries of the choice overload phenomenon: The effect of number of odxptions and time pressure on decision difficulty and satisfaction”, Psychology & Marketing Volume 26, Issue 3. DOI: https://doi.org/10.1002/mar.20269

  • Gustavsson, M., & Johansson, A. (2006). Consumer Trust in E-commerce. The Department of Business Studies of Kristianstad University. Retrieved from: diva-portal.org

  • Hamelink C. J., (2001). The Ethics of Cyberspace. Sage Publications, Thousand Oaks, CA.

  • Harvard Business Review (HBR). (2015). Customer Data: Designing for Transparency and Trust. Harvard Business Review. Retrieved 11 December 2020, from https://hbr.org/2015/05/customer-data-designing-for-transparency-and https://hbr.org/2015/05/customer-data-designing-for-transparency-and-trust?ab=at_articlepage_whattoreadnexttrust?ab=at_articlepage_whattoreadnext.

  • Hee-Woong K., Sumeet G. & So-Hyun L. (2013).Examining the Effect of Online
    Switching Cost on Customers’ Willingness to Pay More. Asia Pacific Journal of Information Systems Vol. 23, No. 1.

  • Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53. doi:10.1145/963770.963772
    Hosseini, M., Shahri, A., Phalp, K., & Ali, R. (2017). Four reference models for transparency requirements in information systems. Requirements Engineering, 23(2), 251-275. https://doi.org/10.1007/s00766-017-0265-y

  • Huiping, W. & Shing, O. L. (2017). Can Likert Scales be Treated as Interval Scales?—A Simulation Study, Journal of Social Service Research Volume 43, 2017 - Issue 4, DOI: https://doi.org/10.1080/01488376.2017.1329775

  • Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261-273. doi: https://doi.org/10.1016/j.eij.2015.06.005

  • Izak, B., Weiquan, W., (2005). Trust In and Adoption of Online Recommendation Agents. Journal of the Association for Information Systems Vol. 6 No.3, pp.72-101.DOI: 10.17705/1jais.00065

  • Jianling W., Ziwei Z. & James C., (2020). User Recommendation in Content Curation Platforms. Department of Computer Science and Engineering, Texas A&M University, DOI: 10.1145/3336191.3371822

  • Jingjing Zhang & Shawn P. Curley (2018) Exploring Explanation Effects on Consumers’ Trust in Online Recommender Agents, International Journal of Human–Computer Interaction, 34:5, 421-432, DOI: 10.1080/10447318.2017.1357904

  • Johansen, I. K., & Guldvik, C. S. (2017). Influencer marketing and purchase intentions: how does influencer marketing affect purchase intentions?

  • John O'D & John D. (2004), A Framework for Evaluation of Information Filtering Techniques in an Adaptive Recommender System, Computational Linguistics and Intelligent Text Processing, 5th International Conference, CICLing 2004, Seoul, Korea, February 15-21. DOI: 10.1007/978-3-540-24630-5_62

  • Karen, F., Kristin, G., Karen, M., Laura, A. F., (2010). Who are the social media influencers? A study of public perceptions of personality. Public Relations Review, Vol. 37, Issue 1, pp. 90-92. DOI: https://doi.org/10.1016/j.pubrev.2010.11.001

  • Kabiawu, O., van Belle, J. P., & Adeyeye, M. (2016). Designing a Knowledge Resource to Address Bounded Rationality and Satisficing for ICT Decisions in Small Organizations. The Electronic Journal of Information Systems in Developing Countries, 73(1), 1-18.

  • Keng CJ, Liao TH (2009) Consequences of post purchase dissonance: The mediating role of an external information search. Soc Behav Personality: Int J 37(10):1327–1340

  • Kharel, B. (2018). Factors Influencing Online Brand Trust : Evidence from Online Buyers in Kathmandu Valley, 3(1), 47–64.

  • Komiak, S., & Benbasat, I. (2006). The Effects of Personalization and Familiarity on Trust and Adoption of Recommendation Agents. Mis Quarterly, 30, 941-960. doi: 10.2307/25148760

  • Kunkel, J., Donkers, T., Barbu, C., & Ziegler, J. (2018). Trust-Related Effects of Expertise and Similarity Cues in Human-Generated Recommendations. In HUMANIZE '18: Proceedings of the 2nd Workshop on Theory-Informed User Modeling for Tailoring and Personalizing InterfacesAt. Tokyo. Retrieved 11 December 2020, from https://www.researchgate.net/publication/325106287_Trusthttps://www.researchgate.net/publication/325106287_Trust-Related_Effects_of_Expertise_and_Similarity_Cues_in_Human-Generated_RecommendationsRelated_Effects_of_Expertise_and_Similarity_Cues_in_Humanhttps://www.researchgate.net/publication/325106287_Trust-Related_Effects_of_Expertise_and_Similarity_Cues_in_Human-Generated_RecommendationsGenerated_Recommendations.

  • Liao T-H (2017) Online shopping post-payment dissonance: dissonance reduction strategy using online consumer social experiences. Int J Inf Manag 37(6):520–538

  • Li, Z., Xiong, F., Wang, X., Chen, H., & Xiong, X. (2019). Topological Influence-Aware Recommendation on Social Networks. Complexity, 2019, 6325654. doi: 10.1155/2019/6325654

  • Lowrey T (1998) The effects of syntactic complexity on advertising persuasiveness. Journal of Consumer Psychology 7(2): 187–206.

  • Matthias S., Martin G. K., (2006). Trust and trustworthiness across different age groups, Games and Economic Behavior Elsevier, vol. 59(2), pages 364-382. DOI:10.1016/j.geb.2006.07.006

  • McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. The journal of strategic information systems, 11(3-4), 297-323.

  • Mohammadi, V., Rahmani, A. M., Darwesh, A. M., & Sahafi, A. (2019). Trust-based recommendation systems in Internet of Things: a systematic literature review. Human-centric Computing and Information Sciences, 9(1), 21. doi: 10.1186/s13673-019-0183-8

  • Monsuwé, T. P., Dellaert, B. G., & De Ruyter, K. (2004). What drives consumers to shop online? A literature review. International journal of service industry management.

  • Newman, D., 2016. Love It Or Hate It: Influencer Marketing Works. Forbes. Available at: https://www.forbes.com/sites/danielnewman/2015/06/23/love-it-or-hate-it-influencerhttps://www.forbes.com/sites/danielnewman/2015/06/23/love-it-or-hate-it-influencer-marketing-works/ - 69bf6392150bmarketing-works/#69bf6392150b

  • O'Donovan, J., & Smyth, B. (2005). Trust in recommender systems. International conference on Intelligent user interfaces. pp. 167–174. DOI: https://doi.org/10.1145/1040830.1040870 Pavlou, P. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7, 101-134.

  • Pedro S., Francisco, M., Carolina L., Ricardo, C.(2014), “The effect of information overload and disorganisation on intention to purchase online” The role of perceived risk and internet experience. Online Information Review Vol. 38 No. 4, pp. 543-561. DOI: 10.1108/OIR-01- 2014-0008

  • Qiu, L., & Benbasat, I. (2009). Evaluating Anthropomorphic Product Recommendation Agents: A Social Relationship Perspective to Designing Information Systems. Journal of Management Information Systems, 25(4), 145–182. doi:10.2753/mis0742-

  • Schwab, D.P., 1980. Construct validity in Organizational behavior. In: Staw, B.M., Cummings, L.L.(Eds.), Research in Organizational Behavior, vol. 2. JAI Press, Greenwich, CN, pp. 3–43.

  • Sheng, X. (2012). Consumer participation and the trust transference process in using online recommendation agents. Journal of Consumer Satisfaction, Dissatisfaction & Complaining Behavior, 25, 96-117.

  • Sheppard B and Sherman D (1998) The grammars of trust: A model and general implications. Academy of Management Review 23(3): 422–437

  • Sherrie Y. X. K. & Izak B., (2006). The Effects of Personalization and Familiarity on Trust and Adoption of Recommendation Agents. MIS Quarterly, Vol. 30, No. 4 (Dec., 2006), pp. 941-960. DOI: 10.2307/25148760 https://www-jstorhttps://www-jstor-org.ezproxy.ub.unimaas.nl/stable/25148760org.ezproxy.ub.unimaas.nl/stable/25148760

  • Shambour, Q., & Lu, J. (2015). An effective recommender system by unifying user and item trust information for B2B applications. Journal of Computer and System Sciences, 81(7), 1110–1126. doi: 10.1016/j.jcss.2014.12.029

  • Sidharth M. & Linjuan R. M, (2015). How Peer Communication and Engagement Motivations Influence Social Media Shopping Behavior: Evidence from China and the United States. Cyberpsychology, Behavior, and Social Networking Vol. 18, No. 10. DOI: https://doi.org/10.1089/cyber.2015.0190

  • Spreitzer, G. M. (1995). Psychological empowerment in the workplace: Dimensions, measurement and validation. Academy of Management Journal, 38 (5), 1442-1465.

  • Sylvain, S. & Jacques, N., (2004).The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80 (2004), pp. 159–169 http://seshttp://ses-perso.telecom-paristech.fr/survey/CanauxInformBienExpe/senecalnantel.pdfperso.telecom-paristech.fr/survey/CanauxInformBienExpe/senecalnantel.pdf

  • Tatiana, M., Wesley V. da. S., Adriano M. S., Claudineia K. F. & Claudimar P. da V., (2020). Online customer behavior: perceptions regarding the types of risks incurred through online purchases. Palgrave Communications volume 6, Article number: 13 (2020).

  • Vorm, E., & Miller, A. (2020). Assessing the Value of Transparency in Recommender Systems: An End-User Perspective. In roceedings of the 5th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems at ACM Conference on Recommender Systems (RecSys 2018). Vancouver. Retrieved 11 December 2020, from https://www.researchgate.net/publication/328134005_Assessing_the_Value_of_Transparency _in_Recommender_Systems_An_End-User_Perspective.

  • Wang, J., Zhu, Z., & Caverlee, J. (2020). User Recommendation in Content Curation Platforms. In WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining. Houston. Retrieved 11 December 2020, from http://people.tamu.edu/~jwang713/pubs/curator-wsdm2020.pdf.

  • Xiao, B., & Benbasat, I. (2007). E-commerce product recommendation agents: use, characteristics, and impact. Mis Quarterly, 31(1), 137-209.

  • Yi, Y., & Gong, T. (2008). The electronic service quality model: The moderating effect of customer self‐efficacy. Psychology & Marketing, 25, 587– 601.

  • Yuanchun J., Jennifer S., Yezheng L., (2010). Maximizing customer satisfaction through an online recommendation system: A novel associative classification model, Decision Support Systems, Volume 48, Issue 3, Pages 470-479, DOI: https://doi.org/10.1016/j.dss.2009.06.006.

  • Yuanping, Y., Fred, F. & Michel, W., (2006). Leveraging Missing Ratings to Improve Online Recommendation Systems. Journal of Marketing Research, Vol. 43, No. 3 (Aug., 2006), pp. 355-365. https://www.jstor.org/stable/30162410

  • Yuan, J., & Li, L. (2014). Recommendation Based on Trust Diffusion Model. The Scientific World Journal, 2014, 1–11. doi:10.1155/2014/159594

© by scheenen, 2022. All Rights Reserved. Built with Typemill.